22/01/2026 20:53 1/4 JTL-Shop Plugins mit Bootstrap-Klasse registrieren

JTL-Shop Plugins mit Bootstrap-Klasse registrieren

Neben allgemeinen Webentwicklungsthemen, werde ich in diesem Blog auf Themen rund um die
Software-Produkte von JTL zu sprechen kommen. Da ich aktuell taglich mit JTL-Produkten arbeite,
habe ich einfach zu diesen Themen manchmal mehr zu berichten.

Mit der Version 4.05 vom JTL-Shop hat JTL den Grundbaustein fir eine moderne Plugin-Architektur
eingefuhrt. Um die Entwicklung von Plugins zu verbessern bzw. zu beschleunigen, kann man ab dieser
Version Plugins Uber eine Bootstrap-Klasse initialisieren.

Die Funktionalitat steckt zwar noch in den Kinderschuhen, ich moéchte aber trotzdem schonmal
zeigen, wie das funktioniert und welche Maoglichkeiten man damit hat.

Bootstrap-Datei und -Klasse anlegen

Damit der JTL-Shop die Bootstrap-Klasse inkludieren kann, muss zunachst eine PHP-Datei angelegt
werden mit dem Pfad “/includes/plugins/{pluginld}/version/{version}/bootstrap.php”. In dieser Datei
muss entweder die Klasse definiert werden, eine andere PHP-Datei mit der Klasse geladen werden
oder ein Autoloader geladen werden, der die entsprechende Klasse bereitstellt. Fir die Bootstrap-
Klasse ist folgender Code notwendig:

namespace meine plugin_id; // WICHTIG! Muss gleich Plugin-Id sein.

class Bootstrap extends \AbstractPlugin

{ public function boot(\EventDispatcher $dispatcher)
{ parent::boot(); // TODO: Change the autogenerated stub
;ublic function installed()
{ parent::installed(); // TODO: Change the autogenerated stub
;ublic function uninstalled()
{ parent::uninstalled(); // TODO: Change the autogenerated stub
;ublic function enabled()
{ parent::enabled(); // TODO: Change the autogenerated stub
;ublic function disabled()
{ parent::disabled(); // TODO: Change the autogenerated stub
}

}

Hook- und Eventlistener registrieren

HennWeb - https://wiki.hennweb.de/

Last update:
08/03/2020 programmieren:jtl-shop:bootstrap https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656552
09:35

Zur Verstandnis:

Dispatcher ist ein ,,Eventverteiler”. Eingehende Ereignisse werden an die registrierten Stellen
weitergeleitet. Wie die Telefonistin, die am Schaltpult sitzt wie man es in alten Filmen sieht (im
Englischen heisst dieser Job tatsachlich ,phone dispatcher”). Sie nimmt den Anrufer entgegen, stellt
fest ob der Empfanger existiert und stellt dann eine Verbindung zwischen den beiden her. Danach ist
ihr Job erledigt. Listener flir Hooks und Events kénnen innerhalb der Methode boot() registriert
werden:

namespace meine plugin_ id;

class Bootstrap extends \AbstractPlugin

{
public function boot(\EventDispatcher $dispatcher) {
$dispatcher->listen(
'shop.hook.' . HOOK SMARTY OUTPUTFILTER,
function() {
pq('body')->append('Hallo Welt');
}
)
}
}

Selbstverstandlich muss nicht zwingend eine anonyme Funktion verwendet werden, sondern es kann
jede beliebige callable Ubergeben werden. Parameter werden als Funktionsparameter definiert:

namespace meine plugin id;

class WarenkorbManipulator
{
public function invoke(
$hookId,
$productlId,
$allPositions,
$amount,
$exists
) |
// Do something
}
}

class Bootstrap extends \AbstractPlugin
{
public function boot(\EventDispatcher $dispatcher) {
$dispatcher->listen(
'shop.hook.' . HOOK WARENKORB CLASS FUEGEEIN,
new WarenkorbManipulator()

);

https://wiki.hennweb.de/ Printed on 22/01/2026 20:53

22/01/2026 20:53 3/4 JTL-Shop Plugins mit Bootstrap-Klasse registrieren

}

Abgesehen von den Hooks, die Uber ‘shop.hook.{hookld}" erreichbar sind, kann man Gber den
EventDispatcher auf weitere Funktionalitat zugreifen. Aktuell gibt es folgende Events abgesehen von
den Hooks:

¢ backend.notification
e shop.run

Uber backend.notification kénnen Notifications im Shop-Backend angezeigt werden:
namespace meine plugin_ id;

class Bootstrap extends \AbstractPlugin

{
public function boot(\EventDispatcher $dispatcher) {
$dispatcher->listen(
‘backend.notification’,
function(\Notification $notify) {
$notify->add(
\NotificationEntry::TYPE WARNING,
“Das Plugin xyz ist nicht vollstandig eingerichtet."
)i
}
)
}
}

Die angegebene Notification wird dann im Shop-Backend angezeigt:

r
W Besucher [Aktueller Monat) Aganches n

.| Markaplats

Migrations-Scripte

Wenn man der von JTL vorgesehenen Plugin-Struktur folgt, sollten Migrations-Scripte Uber die info.xml
definiert werden. Dort kann fur jede Version eine SQL-Datei angegeben werden, in der man SQL-
Befehle zum Upgrade auf die nachste Version definieren kann.

<Install>
<Version nr="105">
<CreateDate>2017-01-01</CreateDate>
<SQL>up.sql</SQL>
</Version>
</Install>

HennWeb - https://wiki.hennweb.de/

https://wiki.hennweb.de/lib/exe/detail.php?id=programmieren%3Ajtl-shop%3Abootstrap&media=programmieren:jtl-shop:jtl-bootstrap-notifications.png

Last update:
08/03/2020 programmieren:jtl-shop:bootstrap https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656552
09:35

Diese Struktur hat verschiedene Probleme:

e Es kénnen nicht mehrere Migrations-Scripte pro Version ausgefihrt werden
e Definition von Down-Scripten nicht moglich
e |TL setzt fehlerhaften SQL-Parser ein, um Namenskonventionen durchzusetzen

Uber Methoden installed() und uninstalled() kann man diesen Mechanismus umgehen und richtige
Migrations-Scripte schreiben. Es ware naturlich winschenswert, wenn JTL in Zukunft eine Mdglichkeit
bieten wurde um Migrationen zu registrieren. Dies wurde eine einheitliche Struktur bei den Plugins
ermdglichen. Bis dahin kann man verschiedene Libs nutzen, um die Migrationen zu verwalten. Eine
hiervon ware z.B. Phinx. Hierbei sollte allerdings darauf geachtet werden, dass die Migrationstabelle
in der Datenbank mit der Plugin-Id geprafixt wird, da hier ansonsten die Migrationen der
verschiedenen Plugins durcheinander kommen.

namespace meine plugin_id;

class Bootstrap extends \AbstractPlugin

{ public function installed()
{ // execute up scripts
;ublic function uninstalled()
{ // execute down scripts
¥

}

Fazit

Naturlich ist man nicht auf die von mir genannten Bespiele eingeschrankt. Wenn die Methode boot()
aufgerufen wird, ist bereits der JTL-Shop-Kontext geladen. Dadurch kann man auf die gesamte API des
JTL-Shops zugreifen. Ich hoffe, dass JTL in Zukunft alle Inhalte aus der info.xml Uber die Bootstrap
konfigurierbar machen wird. Ich halte es fur den richtigen Weg, die info.xml Schritt fur Schritt zu
beschneiden und die Funktionalitaten in die Bootstrap-Klasse zu Uberfuhren. Ich bin gespannt, in
welche Richtung JTL den Shop entwickeln wird.

Quelle: https://mschop.de/blog/jtl-shop-plugins-mit-bootstrap-klasse-registrieren-ger/

From:
https://wiki.nennweb.de/ - HennWeb

Permanent link:

Last update: 08/03/2020 09:35

https://wiki.hennweb.de/ Printed on 22/01/2026 20:53

https://mschop.de/blog/jtl-shop-plugins-mit-bootstrap-klasse-registrieren-ger/
https://wiki.hennweb.de/
https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656552

	[JTL-Shop Plugins mit Bootstrap-Klasse registrieren]
	[JTL-Shop Plugins mit Bootstrap-Klasse registrieren]
	JTL-Shop Plugins mit Bootstrap-Klasse registrieren
	Bootstrap-Datei und -Klasse anlegen
	Hook- und Eventlistener registrieren
	Migrations-Scripte
	Fazit

