
22/01/2026 20:53 1/4 JTL-Shop Plugins mit Bootstrap-Klasse registrieren

HennWeb - https://wiki.hennweb.de/

JTL-Shop Plugins mit Bootstrap-Klasse registrieren

Neben allgemeinen Webentwicklungsthemen, werde ich in diesem Blog auf Themen rund um die
Software-Produkte von JTL zu sprechen kommen. Da ich aktuell täglich mit JTL-Produkten arbeite,
habe ich einfach zu diesen Themen manchmal mehr zu berichten.
Mit der Version 4.05 vom JTL-Shop hat JTL den Grundbaustein für eine moderne Plugin-Architektur
eingeführt. Um die Entwicklung von Plugins zu verbessern bzw. zu beschleunigen, kann man ab dieser
Version Plugins über eine Bootstrap-Klasse initialisieren.
Die Funktionalität steckt zwar noch in den Kinderschuhen, ich möchte aber trotzdem schonmal
zeigen, wie das funktioniert und welche Möglichkeiten man damit hat.

Bootstrap-Datei und -Klasse anlegen

Damit der JTL-Shop die Bootstrap-Klasse inkludieren kann, muss zunächst eine PHP-Datei angelegt
werden mit dem Pfad “/includes/plugins/{pluginId}/version/{version}/bootstrap.php”. In dieser Datei
muss entweder die Klasse definiert werden, eine andere PHP-Datei mit der Klasse geladen werden
oder ein Autoloader geladen werden, der die entsprechende Klasse bereitstellt. Für die Bootstrap-
Klasse ist folgender Code notwendig:

namespace meine_plugin_id; // WICHTIG! Muss gleich Plugin-Id sein.

class Bootstrap extends \AbstractPlugin
{
 public function boot(\EventDispatcher $dispatcher)
 {
 parent::boot(); // TODO: Change the autogenerated stub
 }
 public function installed()
 {
 parent::installed(); // TODO: Change the autogenerated stub
 }
 public function uninstalled()
 {
 parent::uninstalled(); // TODO: Change the autogenerated stub
 }
 public function enabled()
 {
 parent::enabled(); // TODO: Change the autogenerated stub
 }
 public function disabled()
 {
 parent::disabled(); // TODO: Change the autogenerated stub
 }
}

Hook- und Eventlistener registrieren

Last update:
08/03/2020
09:36

programmieren:jtl-shop:bootstrap https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656587

https://wiki.hennweb.de/ Printed on 22/01/2026 20:53

Zur Verständnis:
Dispatcher ist ein „Eventverteiler“. Eingehende Ereignisse werden an die registrierten Stellen
weitergeleitet. Wie die Telefonistin, die am Schaltpult sitzt wie man es in alten Filmen sieht (im
Englischen heisst dieser Job tatsächlich „phone dispatcher“). Sie nimmt den Anrufer entgegen, stellt
fest ob der Empfänger existiert und stellt dann eine Verbindung zwischen den beiden her. Danach ist
ihr Job erledigt. Listener für Hooks und Events können innerhalb der Methode boot() registriert
werden:

namespace meine_plugin_id;

class Bootstrap extends \AbstractPlugin
{
 public function boot(\EventDispatcher $dispatcher) {
 $dispatcher->listen(
 'shop.hook.' . HOOK_SMARTY_OUTPUTFILTER,
 function() {
 pq('body')->append('Hallo Welt');
 }
);
 }
 ...
}

Selbstverständlich muss nicht zwingend eine anonyme Funktion verwendet werden, sondern es kann
jede beliebige callable übergeben werden. Parameter werden als Funktionsparameter definiert:

namespace meine_plugin_id;

class WarenkorbManipulator
{
 public function __invoke(
 $hookId,
 $productId,
 $allPositions,
 $amount,
 $exists
) {
 // Do something
 }
}

class Bootstrap extends \AbstractPlugin
{
 public function boot(\EventDispatcher $dispatcher) {
 $dispatcher->listen(
 'shop.hook.' . HOOK_WARENKORB_CLASS_FUEGEEIN,
 new WarenkorbManipulator()
);
 }
 ...

22/01/2026 20:53 3/4 JTL-Shop Plugins mit Bootstrap-Klasse registrieren

HennWeb - https://wiki.hennweb.de/

}

Abgesehen von den Hooks, die über ‘shop.hook.{hookId}’ erreichbar sind, kann man über den
EventDispatcher auf weitere Funktionalität zugreifen. Aktuell gibt es folgende Events abgesehen von
den Hooks:

backend.notification
shop.run

Über backend.notification können Notifications im Shop-Backend angezeigt werden:

namespace meine_plugin_id;

class Bootstrap extends \AbstractPlugin
{
 public function boot(\EventDispatcher $dispatcher) {
 $dispatcher->listen(
 'backend.notification',
 function(\Notification $notify) {
 $notify->add(
 \NotificationEntry::TYPE_WARNING,
 "Das Plugin xyz ist nicht vollständig eingerichtet."
);
 }
);
 }
 ...
}

Die angegebene Notification wird dann im Shop-Backend angezeigt:

Migrations-Scripte

Wenn man der von JTL vorgesehenen Plugin-Struktur folgt, sollten Migrations-Scripte über die info.xml
definiert werden. Dort kann für jede Version eine SQL-Datei angegeben werden, in der man SQL-
Befehle zum Upgrade auf die nächste Version definieren kann.

<Install>
 <Version nr="105">
 <CreateDate>2017-01-01</CreateDate>
 <SQL>up.sql</SQL>
 </Version>
</Install>

https://wiki.hennweb.de/lib/exe/detail.php?id=programmieren%3Ajtl-shop%3Abootstrap&media=programmieren:jtl-shop:jtl-bootstrap-notifications.png

Last update:
08/03/2020
09:36

programmieren:jtl-shop:bootstrap https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656587

https://wiki.hennweb.de/ Printed on 22/01/2026 20:53

Diese Struktur hat verschiedene Probleme:

Es können nicht mehrere Migrations-Scripte pro Version ausgeführt werden
Definition von Down-Scripten nicht möglich
JTL setzt fehlerhaften SQL-Parser ein, um Namenskonventionen durchzusetzen

Über Methoden installed() und uninstalled() kann man diesen Mechanismus umgehen und richtige
Migrations-Scripte schreiben. Es wäre natürlich wünschenswert, wenn JTL in Zukunft eine Möglichkeit
bieten würde um Migrationen zu registrieren. Dies würde eine einheitliche Struktur bei den Plugins
ermöglichen. Bis dahin kann man verschiedene Libs nutzen, um die Migrationen zu verwalten. Eine
hiervon wäre z.B. Phinx. Hierbei sollte allerdings darauf geachtet werden, dass die Migrationstabelle
in der Datenbank mit der Plugin-Id gepräfixt wird, da hier ansonsten die Migrationen der
verschiedenen Plugins durcheinander kommen.

namespace meine_plugin_id;

class Bootstrap extends \AbstractPlugin
{
 public function installed()
 {
 // execute up scripts
 }
 public function uninstalled()
 {
 // execute down scripts
 }
 ...
}

Fazit

Natürlich ist man nicht auf die von mir genannten Bespiele eingeschränkt. Wenn die Methode boot()
aufgerufen wird, ist bereits der JTL-Shop-Kontext geladen. Dadurch kann man auf die gesamte API des
JTL-Shops zugreifen. Ich hoffe, dass JTL in Zukunft alle Inhalte aus der info.xml über die Bootstrap
konfigurierbar machen wird. Ich halte es für den richtigen Weg, die info.xml Schritt für Schritt zu
beschneiden und die Funktionalitäten in die Bootstrap-Klasse zu überführen. Ich bin gespannt, in
welche Richtung JTL den Shop entwickeln wird.

Quelle: https://mschop.de/blog/jtl-shop-plugins-mit-bootstrap-klasse-registrieren-ger/

From:
https://wiki.hennweb.de/ - HennWeb

Permanent link:
https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656587

Last update: 08/03/2020 09:36

https://mschop.de/blog/jtl-shop-plugins-mit-bootstrap-klasse-registrieren-ger/
https://wiki.hennweb.de/
https://wiki.hennweb.de/doku.php?id=programmieren:jtl-shop:bootstrap&rev=1583656587

	[JTL-Shop Plugins mit Bootstrap-Klasse registrieren]
	[JTL-Shop Plugins mit Bootstrap-Klasse registrieren]
	JTL-Shop Plugins mit Bootstrap-Klasse registrieren
	Bootstrap-Datei und -Klasse anlegen
	Hook- und Eventlistener registrieren
	Migrations-Scripte
	Fazit

